The Synthesis of Aspirin from Wintergreen Oil

A "Green" Two step synthesis of Aspirin

Aspirin - Background

- also known as acetylsalicylic acid (abbreviated ASA), is a salicylate drug.
- Aspirin was first isolated by Felix Hoffmann, a chemist with the German company Bayer in 1897.
- Over \$1 Billion in annual sales
- World production of aspirin has been estimated at 45 thousand tons a year

Aspirin –Biological Activity

- Analgesic (painkiller)
- Antipyretic (fever reducer)
- Anti-inflammatory (inhibition of the synthesis of prostaglandins)

Side effects: gastric irritation, bleeding
Inspiration for new analgesics, Tylenol & Advil

Aspirin – Molecular Structure

The Problem

- Our new company is preparing to manufacture aspirin by a new synthetic route, a new "green" process from evergreen oil.
- The procedure is intended for manufacturing on a large scale (100 kg).
- Testing for reproducibility as regards to yield and purity of Aspirin.

Original Synthesis

http://www.ic.sunysb.edu/Class/che134/susb/susb028.pdf

http://www.sfu.ca/chemistry/students/courses/chem281/aspirin.htm

Scheme 1: Synthesis of Aspirin

STEP 1: Hydrolysis of methyl salicylate

STEP 2: Acetylation of Salicilic Acid

Experimental Procedure

- Perform Hydrolysis Reaction, Acetylation Reaction, Neutralization
- Perform typical organic synthesis chemistry laboratory techniques
 - Equipment setup, Refluxing, Crystallization, Filtration, Drying
- Perform identification and quantitative analyses using: IR, HPLC, MP
- Teams prepare final report comparing yield, purity, and identification of product using IR, MP, HPLC.

Results & Calculations

Table 1--Aspirin

	Product	Acetylsalicylic Acid
	MW	180.16
1	Moles of Salicylic Acid	
2	Theoretical Yield (g)	
3	Dried/Isolated weight	
4	Wt % Purity (HPLC)	
5	Actual Yield (g)	
6	Moles of Aspirin	
7	Acetylation % Yield	

Final Report

Methyl salicylate identification (yes or no)

Tests	Team 1	Team 2	Team 3	Team 4
MP				

Step 1 Salicylic Acid Analyses

Tests	Team 1	Team 2	Team 3	Team 4
MP (135 lit)				
Spectrophotometric				
Weight % Assay				
Yield				

Step 2 Acetylation: Salicylic Acid identification

Tests	Team 1	Team 2	Team 3	Team 4
IR conformity				

Step 2 Aspirin Assays

Tests	Team 1	Team 2	Team 3	Team 4
MP-ID				
HPLC Area%				
Purity				
Yield				

Final Report Questions

- What was the reproducibility of the reaction yield?
- How did the ID and quality of the methyl salicylate compare to the commercial grade?
- What other assays might be of value in determining the quality of the products?
- What recommendations does the synthesis team have to make?